If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+8n-93=0
a = 2; b = 8; c = -93;
Δ = b2-4ac
Δ = 82-4·2·(-93)
Δ = 808
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{808}=\sqrt{4*202}=\sqrt{4}*\sqrt{202}=2\sqrt{202}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{202}}{2*2}=\frac{-8-2\sqrt{202}}{4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{202}}{2*2}=\frac{-8+2\sqrt{202}}{4} $
| a+18=80 | | 45/a=9 | | 4/a=9 | | 5(b=6)=18 | | 9=3/4ee=12 | | 14x=7.5x+25.5 | | 4z=16z+72 | | 46=g+3/ | | 3.2x.N=0.96 | | 4x+5(4x-8)=176 | | x+2=205 | | -x+1+2x=-3+3x+8 | | 16x+2+36x-6=360 | | 14n-4n=20 | | a+20=21 | | 3x+6(2x+5)=135 | | 9x-2=34+ | | 7x+5(x+8)=124 | | 10(x-15)=-220 | | 7–2(4x–3)=9–5(x+2) | | 17u+-16u-18u-13u+10u=-20 | | 5t=24-t | | x+45.6=62.0 | | 2x+2(5x+7)=86 | | -35=6x+49 | | P-1=10+5p+3p-18 | | 4n+5=5n | | m+41=52 | | 286=11x | | 2x|5=16 | | (2x+5)(x+3)=2x×2x+7x-5 | | 2x+5(x+12)=116 |